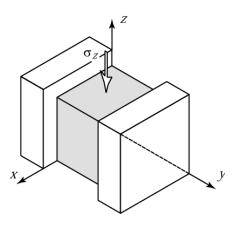
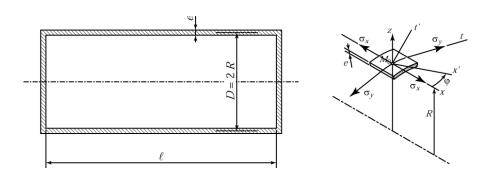

Problème 1: Le système symétrique de trois barres articulées est soumis au point O à une force verticale P. Déterminer les efforts dans les barres. On supposera que l'angle α reste constant au cours de la déformation.

Poser
$$\lambda = \frac{EF}{E'F'}$$


<u>Problème 2 :</u> Un parallélépipède est soumis au régime de forces *P*. On admet que les contraintes sont distribuées uniformément au plan central du parallélépipède d'aire *F*. Etudier l'état de contrainte d'un point de ce plan.

Application : P = 15 kN, F = 1.5 cm².


Problème 3: Un parallélépipède est placé sans jeu ni serrage entre deux parois parallèles indéformables, et ensuite comprimé avec une pression σ_z . Exprimer en fonction de E et μ le module apparent E_a défini par : $E_a = \frac{\sigma_z}{\varepsilon_z}$. Commenter le résultat.

Application à l'acier 37 (E = 210 GPa, $\mu = 0.27$)

<u>Problème 4 :</u> Un cylindre à paroi mince de rayon moyen R et d'épaisseur e est soumis à une pression intérieure p.

- (a) Etudier l'état de contrainte dans un élément de la partie cylindrique.
- (b) Calculer la variation relative de volume du cylindre en négligeant la déformation du fond.
- (c) Déterminer par le cercle de Mohr correspondant les contraintes σ_{φ} et τ_{φ} sur le plan orthogonal à $M_0 x$ pivoté de $\varphi = 60^{\circ}$ autour de $M_0 z$.

Application:

$$e=2 \text{ cm}$$
 $D=1 \text{ m}$ $p=100 \text{ bar}$ $E=210 \text{ GPa}$ $\mu=0.3$